Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can the Inference Logic of Large Language Models be Disentangled into Symbolic Concepts? (2304.01083v1)

Published 3 Apr 2023 in cs.CL, cs.AI, cs.CV, and cs.LG

Abstract: In this paper, we explain the inference logic of LLMs as a set of symbolic concepts. Many recent studies have discovered that traditional DNNs usually encode sparse symbolic concepts. However, because an LLM has much more parameters than traditional DNNs, whether the LLM also encodes sparse symbolic concepts is still an open problem. Therefore, in this paper, we propose to disentangle the inference score of LLMs for dialogue tasks into a small number of symbolic concepts. We verify that we can use those sparse concepts to well estimate all inference scores of the LLM on all arbitrarily masking states of the input sentence. We also evaluate the transferability of concepts encoded by an LLM and verify that symbolic concepts usually exhibit high transferability across similar input sentences. More crucially, those symbolic concepts can be used to explain the exact reasons accountable for the LLM's prediction errors.

Citations (6)

Summary

We haven't generated a summary for this paper yet.