Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prediction-Based Leader-Follower Rendezvous Model Predictive Control with Robustness to Communication Losses (2304.01045v1)

Published 3 Apr 2023 in eess.SY, cs.RO, and cs.SY

Abstract: In this paper we propose a novel distributed model predictive control (DMPC) based algorithm with a trajectory predictor for a scenario of landing of unmanned aerial vehicles (UAVs) on a moving unmanned surface vehicle (USV). The algorithm is executing DMPC with exchange of trajectories between the agents at a sufficient rate. In the case of loss of communication, and given the sensor setup, agents are predicting the trajectories of other agents based on the available measurements and prior information. The predictions are then used as the reference inputs to DMPC. During the landing, the followers are tasked with avoidance of USV-dependent obstacles and inter-agent collisions. In the proposed distributed algorithm, all agents solve their local optimization problem in parallel and we prove the convergence of the proposed algorithm. Finally, the simulation results support the theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.