Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimizing data-flow in Binary Neural Networks (2304.00952v1)

Published 3 Apr 2023 in cs.LG and cs.AI

Abstract: Binary Neural Networks (BNNs) can significantly accelerate the inference time of a neural network by replacing its expensive floating-point arithmetic with bitwise operations. Most existing solutions, however, do not fully optimize data flow through the BNN layers, and intermediate conversions from 1 to 16/32 bits often further hinder efficiency. We propose a novel training scheme that can increase data flow and parallelism in the BNN pipeline; specifically, we introduce a clipping block that decreases the data-width from 32 bits to 8. Furthermore, we reduce the internal accumulator size of a binary layer, usually kept using 32-bit to prevent data overflow without losing accuracy. Additionally, we provide an optimization of the Batch Normalization layer that both reduces latency and simplifies deployment. Finally, we present an optimized implementation of the Binary Direct Convolution for ARM instruction sets. Our experiments show a consistent improvement of the inference speed (up to 1.91 and 2.73x compared to two state-of-the-art BNNs frameworks) with no drop in accuracy for at least one full-precision model.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube