Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Note on the Complexity of Maximizing Temporal Reachability via Edge Temporalisation of Directed Graphs (2304.00817v1)

Published 3 Apr 2023 in cs.DS and math.CO

Abstract: A temporal graph is a graph in which edges are assigned a time label. Two nodes u and v of a temporal graph are connected one to the other if there exists a path from u to v with increasing edge time labels. We consider the problem of assigning time labels to the edges of a digraph in order to maximize the total reachability of the resulting temporal graph (that is, the number of pairs of nodes which are connected one to the other). In particular, we prove that this problem is NP-hard. We then conjecture that the problem is approximable within a constant approximation ratio. This conjecture is a consequence of the following graph theoretic conjecture: any strongly connected directed graph with n nodes admits an out-arborescence and an in-arborescence that are edge-disjoint, have the same root, and each spans $\Omega$(n) nodes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.