Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantum Simulation for Quantum Dynamics with Artificial Boundary Conditions (2304.00667v1)

Published 3 Apr 2023 in quant-ph, cs.NA, and math.NA

Abstract: Quantum dynamics, typically expressed in the form of a time-dependent Schr\"odinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABC) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms can not be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schr\"odingerisation method (Jin et al. arXiv:2212.13969 and arXiv:2212.14703) that converts non-Hermitian dynamics to a Schr\"odinger form, for the artificial boundary problems. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms, and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube