Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Semi-supervised Neural Machine Translation with Consistency Regularization for Low-Resource Languages (2304.00557v1)

Published 2 Apr 2023 in cs.CL and cs.LG

Abstract: The advent of deep learning has led to a significant gain in machine translation. However, most of the studies required a large parallel dataset which is scarce and expensive to construct and even unavailable for some languages. This paper presents a simple yet effective method to tackle this problem for low-resource languages by augmenting high-quality sentence pairs and training NMT models in a semi-supervised manner. Specifically, our approach combines the cross-entropy loss for supervised learning with KL Divergence for unsupervised fashion given pseudo and augmented target sentences derived from the model. We also introduce a SentenceBERT-based filter to enhance the quality of augmenting data by retaining semantically similar sentence pairs. Experimental results show that our approach significantly improves NMT baselines, especially on low-resource datasets with 0.46--2.03 BLEU scores. We also demonstrate that using unsupervised training for augmented data is more efficient than reusing the ground-truth target sentences for supervised learning.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.