Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Context Distribution Shift in Task Representation Learning for Offline Meta RL (2304.00354v2)

Published 1 Apr 2023 in cs.LG and cs.AI

Abstract: Offline Meta Reinforcement Learning (OMRL) aims to learn transferable knowledge from offline datasets to enhance the learning process for new target tasks. Context-based Reinforcement Learning (RL) adopts a context encoder to expediently adapt the agent to new tasks by inferring the task representation, and then adjusting the policy based on this inferred representation. In this work, we focus on context-based OMRL, specifically on the challenge of learning task representation for OMRL. We conduct experiments that demonstrate that the context encoder trained on offline datasets might encounter distribution shift between the contexts used for training and testing. To overcome this problem, we present a hard-sampling-based strategy to train a robust task context encoder. Our experimental findings on diverse continuous control tasks reveal that utilizing our approach yields more robust task representations and better testing performance in terms of accumulated returns compared to baseline methods. Our code is available at https://github.com/ZJLAB-AMMI/HS-OMRL.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.