Papers
Topics
Authors
Recent
2000 character limit reached

Vision Transformers with Mixed-Resolution Tokenization (2304.00287v2)

Published 1 Apr 2023 in cs.CV

Abstract: Vision Transformer models process input images by dividing them into a spatially regular grid of equal-size patches. Conversely, Transformers were originally introduced over natural language sequences, where each token represents a subword - a chunk of raw data of arbitrary size. In this work, we apply this approach to Vision Transformers by introducing a novel image tokenization scheme, replacing the standard uniform grid with a mixed-resolution sequence of tokens, where each token represents a patch of arbitrary size. Using the Quadtree algorithm and a novel saliency scorer, we construct a patch mosaic where low-saliency areas of the image are processed in low resolution, routing more of the model's capacity to important image regions. Using the same architecture as vanilla ViTs, our Quadformer models achieve substantial accuracy gains on image classification when controlling for the computational budget. Code and models are publicly available at https://github.com/TomerRonen34/mixed-resolution-vit .

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 53 tweets with 0 likes about this paper.