Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Vision Transformers with Mixed-Resolution Tokenization (2304.00287v2)

Published 1 Apr 2023 in cs.CV

Abstract: Vision Transformer models process input images by dividing them into a spatially regular grid of equal-size patches. Conversely, Transformers were originally introduced over natural language sequences, where each token represents a subword - a chunk of raw data of arbitrary size. In this work, we apply this approach to Vision Transformers by introducing a novel image tokenization scheme, replacing the standard uniform grid with a mixed-resolution sequence of tokens, where each token represents a patch of arbitrary size. Using the Quadtree algorithm and a novel saliency scorer, we construct a patch mosaic where low-saliency areas of the image are processed in low resolution, routing more of the model's capacity to important image regions. Using the same architecture as vanilla ViTs, our Quadformer models achieve substantial accuracy gains on image classification when controlling for the computational budget. Code and models are publicly available at https://github.com/TomerRonen34/mixed-resolution-vit .

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets