Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the impact of regularization in data-driven predictive control (2304.00263v2)

Published 1 Apr 2023 in eess.SY and cs.SY

Abstract: Model predictive control (MPC) is a control strategy widely used in industrial applications. However, its implementation typically requires a mathematical model of the system being controlled, which can be a time-consuming and expensive task. Data-driven predictive control (DDPC) methods offer an alternative approach that does not require an explicit mathematical model, but instead optimize the control policy directly from data. In this paper, we study the impact of two different regularization penalties on the closed-loop performance of a recently introduced data-driven method called $\gamma$-DDPC. Moreover, we discuss the tuning of the related coefficients in different data and noise scenarios, to provide some guidelines for the end user.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.