Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reusing Deep Neural Network Models through Model Re-engineering (2304.00245v2)

Published 1 Apr 2023 in cs.SE and cs.AI

Abstract: Training deep neural network (DNN) models, which has become an important task in today's software development, is often costly in terms of computational resources and time. With the inspiration of software reuse, building DNN models through reusing existing ones has gained increasing attention recently. Prior approaches to DNN model reuse have two main limitations: 1) reusing the entire model, while only a small part of the model's functionalities (labels) are required, would cause much overhead (e.g., computational and time costs for inference), and 2) model reuse would inherit the defects and weaknesses of the reused model, and hence put the new system under threats of security attack. To solve the above problem, we propose SeaM, a tool that re-engineers a trained DNN model to improve its reusability. Specifically, given a target problem and a trained model, SeaM utilizes a gradient-based search method to search for the model's weights that are relevant to the target problem. The re-engineered model that only retains the relevant weights is then reused to solve the target problem. Evaluation results on widely-used models show that the re-engineered models produced by SeaM only contain 10.11% weights of the original models, resulting 42.41% reduction in terms of inference time. For the target problem, the re-engineered models even outperform the original models in classification accuracy by 5.85%. Moreover, reusing the re-engineered models inherits an average of 57% fewer defects than reusing the entire model. We believe our approach to reducing reuse overhead and defect inheritance is one important step forward for practical model reuse.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube