Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits (2303.18187v3)

Published 30 Mar 2023 in cs.NE and cs.LG

Abstract: Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and {the lack of energy efficiency} inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks and propose contrastive-signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)