Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Differentially Private Stochastic Convex Optimization in (Non)-Euclidean Space Revisited (2303.18047v1)

Published 31 Mar 2023 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimization (DP-SCO) in Euclidean and general $\ell_pd$ spaces. Specifically, we focus on three settings that are still far from well understood: (1) DP-SCO over a constrained and bounded (convex) set in Euclidean space; (2) unconstrained DP-SCO in $\ell_pd$ space; (3) DP-SCO with heavy-tailed data over a constrained and bounded set in $\ell_pd$ space. For problem (1), for both convex and strongly convex loss functions, we propose methods whose outputs could achieve (expected) excess population risks that are only dependent on the Gaussian width of the constraint set rather than the dimension of the space. Moreover, we also show the bound for strongly convex functions is optimal up to a logarithmic factor. For problems (2) and (3), we propose several novel algorithms and provide the first theoretical results for both cases when $1<p<2$ and $2\leq p\leq \infty$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.