Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

LaCViT: A Label-aware Contrastive Fine-tuning Framework for Vision Transformers (2303.18013v3)

Published 31 Mar 2023 in cs.CV and cs.AI

Abstract: Vision Transformers (ViTs) have emerged as popular models in computer vision, demonstrating state-of-the-art performance across various tasks. This success typically follows a two-stage strategy involving pre-training on large-scale datasets using self-supervised signals, such as masked random patches, followed by fine-tuning on task-specific labeled datasets with cross-entropy loss. However, this reliance on cross-entropy loss has been identified as a limiting factor in ViTs, affecting their generalization and transferability to downstream tasks. Addressing this critical challenge, we introduce a novel Label-aware Contrastive Training framework, LaCViT, which significantly enhances the quality of embeddings in ViTs. LaCViT not only addresses the limitations of cross-entropy loss but also facilitates more effective transfer learning across diverse image classification tasks. Our comprehensive experiments on eight standard image classification datasets reveal that LaCViT statistically significantly enhances the performance of three evaluated ViTs by up-to 10.78% under Top-1 Accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.