Papers
Topics
Authors
Recent
2000 character limit reached

Per-Example Gradient Regularization Improves Learning Signals from Noisy Data (2303.17940v1)

Published 31 Mar 2023 in stat.ML and cs.LG

Abstract: Gradient regularization, as described in \citet{barrett2021implicit}, is a highly effective technique for promoting flat minima during gradient descent. Empirical evidence suggests that this regularization technique can significantly enhance the robustness of deep learning models against noisy perturbations, while also reducing test error. In this paper, we explore the per-example gradient regularization (PEGR) and present a theoretical analysis that demonstrates its effectiveness in improving both test error and robustness against noise perturbations. Specifically, we adopt a signal-noise data model from \citet{cao2022benign} and show that PEGR can learn signals effectively while suppressing noise. In contrast, standard gradient descent struggles to distinguish the signal from the noise, leading to suboptimal generalization performance. Our analysis reveals that PEGR penalizes the variance of pattern learning, thus effectively suppressing the memorization of noises from the training data. These findings underscore the importance of variance control in deep learning training and offer useful insights for developing more effective training approaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.