Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

STFAR: Improving Object Detection Robustness at Test-Time by Self-Training with Feature Alignment Regularization (2303.17937v1)

Published 31 Mar 2023 in cs.CV

Abstract: Domain adaptation helps generalizing object detection models to target domain data with distribution shift. It is often achieved by adapting with access to the whole target domain data. In a more realistic scenario, target distribution is often unpredictable until inference stage. This motivates us to explore adapting an object detection model at test-time, a.k.a. test-time adaptation (TTA). In this work, we approach test-time adaptive object detection (TTAOD) from two perspective. First, we adopt a self-training paradigm to generate pseudo labeled objects with an exponential moving average model. The pseudo labels are further used to supervise adapting source domain model. As self-training is prone to incorrect pseudo labels, we further incorporate aligning feature distributions at two output levels as regularizations to self-training. To validate the performance on TTAOD, we create benchmarks based on three standard object detection datasets and adapt generic TTA methods to object detection task. Extensive evaluations suggest our proposed method sets the state-of-the-art on test-time adaptive object detection task.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.