Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-Cultural Transfer Learning for Chinese Offensive Language Detection (2303.17927v1)

Published 31 Mar 2023 in cs.CL

Abstract: Detecting offensive language is a challenging task. Generalizing across different cultures and languages becomes even more challenging: besides lexical, syntactic and semantic differences, pragmatic aspects such as cultural norms and sensitivities, which are particularly relevant in this context, vary greatly. In this paper, we target Chinese offensive language detection and aim to investigate the impact of transfer learning using offensive language detection data from different cultural backgrounds, specifically Korean and English. We find that culture-specific biases in what is considered offensive negatively impact the transferability of LMs and that LMs trained on diverse cultural data are sensitive to different features in Chinese offensive language detection. In a few-shot learning scenario, however, our study shows promising prospects for non-English offensive language detection with limited resources. Our findings highlight the importance of cross-cultural transfer learning in improving offensive language detection and promoting inclusive digital spaces.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.