Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Generalized Anthropomorphic Functional Grasping with Minimal Demonstrations (2303.17808v1)

Published 31 Mar 2023 in cs.RO

Abstract: This article investigates the challenge of achieving functional tool-use grasping with high-DoF anthropomorphic hands, with the aim of enabling anthropomorphic hands to perform tasks that require human-like manipulation and tool-use. However, accomplishing human-like grasping in real robots present many challenges, including obtaining diverse functional grasps for a wide variety of objects, handling generalization ability for kinematically diverse robot hands and precisely completing object shapes from a single-view perception. To tackle these challenges, we propose a six-step grasp synthesis algorithm based on fine-grained contact modeling that generates physically plausible and human-like functional grasps for category-level objects with minimal human demonstrations. With the contact-based optimization and learned dense shape correspondence, the proposed algorithm is adaptable to various objects in same category and a board range of robot hand models. To further demonstrate the robustness of the framework, over 10K functional grasps are synthesized to train our neural network, named DexFG-Net, which generates diverse sets of human-like functional grasps based on the reconstructed object model produced by a shape completion module. The proposed framework is extensively validated in simulation and on a real robot platform. Simulation experiments demonstrate that our method outperforms baseline methods by a large margin in terms of grasp functionality and success rate. Real robot experiments show that our method achieved an overall success rate of 79\% and 68\% for tool-use grasp on 3-D printed and real test objects, respectively, using a 5-Finger Schunk Hand. The experimental results indicate a step towards human-like grasping with anthropomorphic hands.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.