Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Garment DensePose for Robust Warping in Virtual Try-On (2303.17688v1)

Published 30 Mar 2023 in cs.CV

Abstract: Virtual try-on, i.e making people virtually try new garments, is an active research area in computer vision with great commercial applications. Current virtual try-on methods usually work in a two-stage pipeline. First, the garment image is warped on the person's pose using a flow estimation network. Then in the second stage, the warped garment is fused with the person image to render a new try-on image. Unfortunately, such methods are heavily dependent on the quality of the garment warping which often fails when dealing with hard poses (e.g., a person lifting or crossing arms). In this work, we propose a robust warping method for virtual try-on based on a learned garment DensePose which has a direct correspondence with the person's DensePose. Due to the lack of annotated data, we show how to leverage an off-the-shelf person DensePose model and a pretrained flow model to learn the garment DensePose in a weakly supervised manner. The garment DensePose allows a robust warping to any person's pose without any additional computation. Our method achieves the state-of-the-art equivalent on virtual try-on benchmarks and shows warping robustness on in-the-wild person images with hard poses, making it more suited for real-world virtual try-on applications.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.