Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computationally efficient predictive control based on ANN state-space models (2303.17305v2)

Published 30 Mar 2023 in eess.SY and cs.SY

Abstract: Artificial neural networks (ANN) have been shown to be flexible and effective function estimators for identification of nonlinear state-space models. However, if the resulting models are used directly for nonlinear model predictive control (NMPC), the resulting nonlinear optimization problem is often overly complex due the size of the network, requires the use of high-order observers to track the states of the ANN model, and the overall control scheme exploits little of the structural properties or available autograd tools for these models. In this paper, we propose an efficient approach to auto-convert ANN state-space models to linear parameter-varying (LPV) form and solve predictive control problems by successive solutions of linear model predictive problems, corresponding to quadratic programs (QPs). Furthermore, we show how existing ANN identification methods, such as the SUBNET method that uses a state encoder, can provide efficient implementation of MPCs. The performance of the proposed approach is demonstrated via a simulation study on an unbalanced disc system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.