Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

EPG-MGCN: Ego-Planning Guided Multi-Graph Convolutional Network for Heterogeneous Agent Trajectory Prediction (2303.17027v1)

Published 29 Mar 2023 in cs.LG, cs.CV, and cs.RO

Abstract: To drive safely in complex traffic environments, autonomous vehicles need to make an accurate prediction of the future trajectories of nearby heterogeneous traffic agents (i.e., vehicles, pedestrians, bicyclists, etc). Due to the interactive nature, human drivers are accustomed to infer what the future situations will become if they are going to execute different maneuvers. To fully exploit the impacts of interactions, this paper proposes a ego-planning guided multi-graph convolutional network (EPG-MGCN) to predict the trajectories of heterogeneous agents using both historical trajectory information and ego vehicle's future planning information. The EPG-MGCN first models the social interactions by employing four graph topologies, i.e., distance graphs, visibility graphs, planning graphs and category graphs. Then, the planning information of the ego vehicle is encoded by both the planning graph and the subsequent planning-guided prediction module to reduce uncertainty in the trajectory prediction. Finally, a category-specific gated recurrent unit (CS-GRU) encoder-decoder is designed to generate future trajectories for each specific type of agents. Our network is evaluated on two real-world trajectory datasets: ApolloScape and NGSIM. The experimental results show that the proposed EPG-MGCN achieves state-of-the-art performance compared to existing methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube