The G-invariant graph Laplacian (2303.17001v4)
Abstract: Graph Laplacian based algorithms for data lying on a manifold have been proven effective for tasks such as dimensionality reduction, clustering, and denoising. In this work, we consider data sets whose data points lie on a manifold that is closed under the action of a known unitary matrix Lie group G. We propose to construct the graph Laplacian by incorporating the distances between all the pairs of points generated by the action of G on the data set. We deem the latter construction the ``G-invariant Graph Laplacian'' (G-GL). We show that the G-GL converges to the Laplace-Beltrami operator on the data manifold, while enjoying a significantly improved convergence rate compared to the standard graph Laplacian which only utilizes the distances between the points in the given data set. Furthermore, we show that the G-GL admits a set of eigenfunctions that have the form of certain products between the group elements and eigenvectors of certain matrices, which can be estimated from the data efficiently using FFT-type algorithms. We demonstrate our construction and its advantages on the problem of filtering data on a noisy manifold closed under the action of the special unitary group SU(2).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.