Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Supervised Learning for Table Tennis Match Prediction (2303.16776v1)

Published 28 Mar 2023 in cs.LG

Abstract: Machine learning, classification and prediction models have applications across a range of fields. Sport analytics is an increasingly popular application, but most existing work is focused on automated refereeing in mainstream sports and injury prevention. Research on other sports, such as table tennis, has only recently started gaining more traction. This paper proposes the use of machine learning to predict the outcome of table tennis single matches. We use player and match statistics as features and evaluate their relative importance in an ablation study. In terms of models, a number of popular models were explored. We found that 5-fold cross-validation and hyperparameter tuning was crucial to improve model performance. We investigated different feature aggregation strategies in our ablation study to demonstrate the robustness of the models. Different models performed comparably, with the accuracy of the results (61-70%) matching state-of-the-art models in comparable sports, such as tennis. The results can serve as a baseline for future table tennis prediction models, and can feed back to prediction research in similar ball sports.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.