Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Novel Patent Similarity Measurement Methodology: Semantic Distance and Technological Distance (2303.16767v2)

Published 23 Mar 2023 in cs.IR, cs.AI, and cs.SI

Abstract: Patent similarity analysis plays a crucial role in evaluating the risk of patent infringement. Nonetheless, this analysis is predominantly conducted manually by legal experts, often resulting in a time-consuming process. Recent advances in natural language processing technology offer a promising avenue for automating this process. However, methods for measuring similarity between patents still rely on experts manually classifying patents. Due to the recent development of artificial intelligence technology, a lot of research is being conducted focusing on the semantic similarity of patents using natural language processing technology. However, it is difficult to accurately analyze patent data, which are legal documents representing complex technologies, using existing natural language processing technologies. To address these limitations, we propose a hybrid methodology that takes into account bibliographic similarity, measures the similarity between patents by considering the semantic similarity of patents, the technical similarity between patents, and the bibliographic information of patents. Using natural language processing techniques, we measure semantic similarity based on patent text and calculate technical similarity through the degree of coexistence of International patent classification (IPC) codes. The similarity of bibliographic information of a patent is calculated using the special characteristics of the patent: citation information, inventor information, and assignee information. We propose a model that assigns reasonable weights to each similarity method considered. With the help of experts, we performed manual similarity evaluations on 420 pairs and evaluated the performance of our model based on this data. We have empirically shown that our method outperforms recent natural language processing techniques.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.