Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deep transfer learning for detecting Covid-19, Pneumonia and Tuberculosis using CXR images -- A Review (2303.16754v1)

Published 26 Mar 2023 in eess.IV and cs.LG

Abstract: Chest X-rays remains to be the most common imaging modality used to diagnose lung diseases. However, they necessitate the interpretation of experts (radiologists and pulmonologists), who are few. This review paper investigates the use of deep transfer learning techniques to detect COVID-19, pneumonia, and tuberculosis in chest X-ray (CXR) images. It provides an overview of current state-of-the-art CXR image classification techniques and discusses the challenges and opportunities in applying transfer learning to this domain. The paper provides a thorough examination of recent research studies that used deep transfer learning algorithms for COVID-19, pneumonia, and tuberculosis detection, highlighting the advantages and disadvantages of these approaches. Finally, the review paper discusses future research directions in the field of deep transfer learning for CXR image classification, as well as the potential for these techniques to aid in the diagnosis and treatment of lung diseases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.