Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Who You Play Affects How You Play: Predicting Sports Performance Using Graph Attention Networks With Temporal Convolution (2303.16741v1)

Published 29 Mar 2023 in cs.LG and cs.SI

Abstract: This study presents a novel deep learning method, called GATv2-GCN, for predicting player performance in sports. To construct a dynamic player interaction graph, we leverage player statistics and their interactions during gameplay. We use a graph attention network to capture the attention that each player pays to each other, allowing for more accurate modeling of the dynamic player interactions. To handle the multivariate player statistics time series, we incorporate a temporal convolution layer, which provides the model with temporal predictive power. We evaluate the performance of our model using real-world sports data, demonstrating its effectiveness in predicting player performance. Furthermore, we explore the potential use of our model in a sports betting context, providing insights into profitable strategies that leverage our predictive power. The proposed method has the potential to advance the state-of-the-art in player performance prediction and to provide valuable insights for sports analytics and betting industries.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.