Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

Graph Neural Networks for Hardware Vulnerability Analysis -- Can you Trust your GNN? (2303.16690v1)

Published 29 Mar 2023 in cs.CR

Abstract: The participation of third-party entities in the globalized semiconductor supply chain introduces potential security vulnerabilities, such as intellectual property piracy and hardware Trojan (HT) insertion. Graph neural networks (GNNs) have been employed to address various hardware security threats, owing to their superior performance on graph-structured data, such as circuits. However, GNNs are also susceptible to attacks. This work examines the use of GNNs for detecting hardware threats like HTs and their vulnerability to attacks. We present BadGNN, a backdoor attack on GNNs that can hide HTs and evade detection with a 100% success rate through minor circuit perturbations. Our findings highlight the need for further investigation into the security and robustness of GNNs before they can be safely used in security-critical applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.