Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Constraint-Adaptive MPC for linear systems: A system-theoretic framework for speeding up MPC through online constraint removal (2303.16581v2)

Published 29 Mar 2023 in math.OC, cs.SY, and eess.SY

Abstract: Reducing the computation time of model predictive control (MPC) is important, especially for systems constrained by many state constraints. In this paper, we propose a new online constraint removal framework for linear systems, for which we coin the term constraint-adaptive MPC (ca-MPC). In so-called exact ca-MPC, we adapt the imposed constraints by removing, at each time-step, a subset of the state constraints in order to reduce the computational complexity of the receding-horizon optimal control problem, while ensuring that the closed-loop behavior is {\em identical} to that of the original MPC law. We also propose an approximate ca-MPC scheme in which a further reduction of computation time can be accomplished by a tradeoff with closed-loop performance, while still preserving recursive feasibility, stability, and constraint satisfaction properties. The online constraint removal exploits fast backward and forward reachability computations combined with optimality properties.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.