Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

LMExplainer: Grounding Knowledge and Explaining Language Models (2303.16537v3)

Published 29 Mar 2023 in cs.CL

Abstract: LLMs (LMs) like GPT-4 are important in AI applications, but their opaque decision-making process reduces user trust, especially in safety-critical areas. We introduce LMExplainer, a novel knowledge-grounded explainer that clarifies the reasoning process of LMs through intuitive, human-understandable explanations. By leveraging a graph attention network (GAT) with a large-scale knowledge graph (KG), LMExplainer not only precisely narrows the reasoning space to focus on the most relevant knowledge but also grounds its reasoning in structured, verifiable knowledge to reduce hallucinations and enhance interpretability. LMExplainer effectively generates human-understandable explanations to enhance transparency and streamline the decision-making process. Additionally, by incorporating debugging into the explanation, it offers expertise suggestions that improve LMs from a developmental perspective. Thus, LMExplainer stands as an enhancement in making LMs more accessible and understandable to users. We evaluate LMExplainer on benchmark datasets such as CommonsenseQA and OpenBookQA, demonstrating that it outperforms most existing methods. By comparing the explanations generated by LMExplainer with those of other models, we show that our approach offers more comprehensive and clearer explanations of the reasoning process. LMExplainer provides a deeper understanding of the inner workings of LMs, advancing towards more reliable, transparent, and equitable AI.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.