Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Importance Sampling for Stochastic Gradient Descent in Deep Neural Networks (2303.16529v1)

Published 29 Mar 2023 in cs.LG

Abstract: Stochastic gradient descent samples uniformly the training set to build an unbiased gradient estimate with a limited number of samples. However, at a given step of the training process, some data are more helpful than others to continue learning. Importance sampling for training deep neural networks has been widely studied to propose sampling schemes yielding better performance than the uniform sampling scheme. After recalling the theory of importance sampling for deep learning, this paper reviews the challenges inherent to this research area. In particular, we propose a metric allowing the assessment of the quality of a given sampling scheme; and we study the interplay between the sampling scheme and the optimizer used.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)