Papers
Topics
Authors
Recent
2000 character limit reached

Block-Randomized Stochastic Methods for Tensor Ring Decomposition (2303.16492v1)

Published 29 Mar 2023 in math.NA and cs.NA

Abstract: Tensor ring (TR) decomposition is a simple but effective tensor network for analyzing and interpreting latent patterns of tensors. In this work, we propose a doubly randomized optimization framework for computing TR decomposition. It can be regarded as a sensible mix of randomized block coordinate descent and stochastic gradient descent, and hence functions in a double-random manner and can achieve lightweight updates and a small memory footprint. Further, to improve the convergence, especially for ill-conditioned problems, we propose a scaled version of the framework that can be viewed as an adaptive preconditioned or diagonally-scaled variant. Four different probability distributions for selecting the mini-batch and the adaptive strategy for determining the step size are also provided. Finally, we present the theoretical properties and numerical performance for our proposals.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.