Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Certified Hardness vs. Randomness for Log-Space (2303.16413v1)

Published 29 Mar 2023 in cs.CC and cs.DS

Abstract: Let $\mathcal{L}$ be a language that can be decided in linear space and let $\epsilon >0$ be any constant. Let $\mathcal{A}$ be the exponential hardness assumption that for every $n$, membership in $\mathcal{L}$ for inputs of length~$n$ cannot be decided by circuits of size smaller than $2{\epsilon n}$. We prove that for every function $f :{0,1}* \rightarrow {0,1}$, computable by a randomized logspace algorithm $R$, there exists a deterministic logspace algorithm $D$ (attempting to compute $f$), such that on every input $x$ of length $n$, the algorithm $D$ outputs one of the following: 1: The correct value $f(x)$. 2: The string: ``I am unable to compute $f(x)$ because the hardness assumption $\mathcal{A}$ is false'', followed by a (provenly correct) circuit of size smaller than $2{\epsilon n'}$ for membership in $\mathcal{L}$ for inputs of length~$n'$, for some $n' = \Theta (\log n)$; that is, a circuit that refutes $\mathcal{A}$. Our next result is a universal derandomizer for $BPL$: We give a deterministic algorithm $U$ that takes as an input a randomized logspace algorithm $R$ and an input $x$ and simulates the computation of $R$ on $x$, deteriministically. Under the widely believed assumption $BPL=L$, the space used by $U$ is at most $C_R \cdot \log n$ (where $C_R$ is a constant depending on~$R$). Moreover, for every constant $c \geq 1$, if $BPL\subseteq SPACE[(\log(n)){c}]$ then the space used by $U$ is at most $C_R \cdot (\log(n)){c}$. Finally, we prove that if optimal hitting sets for ordered branching programs exist then there is a deterministic logspace algorithm that, given a black-box access to an ordered branching program $B$ of size $n$, estimates the probability that $B$ accepts on a uniformly random input. This extends the result of (Cheng and Hoza CCC 2020), who proved that an optimal hitting set implies a white-box two-sided derandomization.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: