Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ChatGPT or academic scientist? Distinguishing authorship with over 99% accuracy using off-the-shelf machine learning tools (2303.16352v1)

Published 28 Mar 2023 in cs.LG and cs.CL

Abstract: ChatGPT has enabled access to AI-generated writing for the masses, and within just a few months, this product has disrupted the knowledge economy, initiating a culture shift in the way people work, learn, and write. The need to discriminate human writing from AI is now both critical and urgent, particularly in domains like higher education and academic writing, where AI had not been a significant threat or contributor to authorship. Addressing this need, we developed a method for discriminating text generated by ChatGPT from (human) academic scientists, relying on prevalent and accessible supervised classification methods. We focused on how a particular group of humans, academic scientists, write differently than ChatGPT, and this targeted approach led to the discovery of new features for discriminating (these) humans from AI; as examples, scientists write long paragraphs and have a penchant for equivocal language, frequently using words like but, however, and although. With a set of 20 features, including the aforementioned ones and others, we built a model that assigned the author, as human or AI, at well over 99% accuracy, resulting in 20 times fewer misclassified documents compared to the field-leading approach. This strategy for discriminating a particular set of humans writing from AI could be further adapted and developed by others with basic skills in supervised classification, enabling access to many highly accurate and targeted models for detecting AI usage in academic writing and beyond.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.