Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Codex Prompt Engineering for OCL Generation: An Empirical Study (2303.16244v1)

Published 28 Mar 2023 in cs.SE and cs.AI

Abstract: The Object Constraint Language (OCL) is a declarative language that adds constraints and object query expressions to MOF models. Despite its potential to provide precision and conciseness to UML models, the unfamiliar syntax of OCL has hindered its adoption. Recent advancements in LLMs, such as GPT-3, have shown their capability in many NLP tasks, including semantic parsing and text generation. Codex, a GPT-3 descendant, has been fine-tuned on publicly available code from GitHub and can generate code in many programming languages. We investigate the reliability of OCL constraints generated by Codex from natural language specifications. To achieve this, we compiled a dataset of 15 UML models and 168 specifications and crafted a prompt template with slots to populate with UML information and the target task, using both zero- and few-shot learning methods. By measuring the syntactic validity and execution accuracy metrics of the generated OCL constraints, we found that enriching the prompts with UML information and enabling few-shot learning increases the reliability of the generated OCL constraints. Furthermore, the results reveal a close similarity based on sentence embedding between the generated OCL constraints and the human-written ones in the ground truth, implying a level of clarity and understandability in the generated OCL constraints by Codex.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube