Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion Maps for Group-Invariant Manifolds (2303.16169v2)

Published 28 Mar 2023 in cs.LG, cs.NA, and math.NA

Abstract: In this article, we consider the manifold learning problem when the data set is invariant under the action of a compact Lie group $K$. Our approach consists in augmenting the data-induced graph Laplacian by integrating over the $K$-orbits of the existing data points, which yields a $K$-invariant graph Laplacian $L$. We prove that $L$ can be diagonalized by using the unitary irreducible representation matrices of $K$, and we provide an explicit formula for computing its eigenvalues and eigenfunctions. In addition, we show that the normalized Laplacian operator $L_N$ converges to the Laplace-Beltrami operator of the data manifold with an improved convergence rate, where the improvement grows with the dimension of the symmetry group $K$. This work extends the steerable graph Laplacian framework of Landa and Shkolnisky from the case of $\operatorname{SO}(2)$ to arbitrary compact Lie groups.

Citations (1)

Summary

We haven't generated a summary for this paper yet.