Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Dias: Dynamic Rewriting of Pandas Code (2303.16146v2)

Published 28 Mar 2023 in cs.DB and cs.PL

Abstract: In recent years, dataframe libraries, such as pandas have exploded in popularity. Due to their flexibility, they are increasingly used in ad-hoc exploratory data analysis (EDA) workloads. These workloads are diverse, including custom functions which can span libraries or be written in pure Python. The majority of systems available to accelerate EDA workloads focus on bulk-parallel workloads, which contain vastly different computational patterns, typically within a single library. As a result, they can introduce excessive overheads for ad-hoc EDA workloads due to their expensive optimization techniques. Instead, we identify program rewriting as a lightweight technique which can offer substantial speedups while also avoiding slowdowns. We implemented our techniques in Dias, which rewrites notebook cells to be more efficient for ad-hoc EDA workloads. We develop techniques for efficient rewrites in Dias, including dynamic checking of preconditions under which rewrites are correct and just-in-time rewrites for notebook environments. We show that Dias can rewrite individual cells to be 57$\times$ faster compared to pandas and 1909$\times$ faster compared to optimized systems such as modin. Furthermore, Dias can accelerate whole notebooks by up to 3.6$\times$ compared to pandas and 26.4$\times$ compared to modin.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com