Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Pre-Training For Data-Efficient Text-to-Speech On Low Resource Languages (2303.15669v1)

Published 28 Mar 2023 in eess.AS, cs.AI, and cs.LG

Abstract: Neural text-to-speech (TTS) models can synthesize natural human speech when trained on large amounts of transcribed speech. However, collecting such large-scale transcribed data is expensive. This paper proposes an unsupervised pre-training method for a sequence-to-sequence TTS model by leveraging large untranscribed speech data. With our pre-training, we can remarkably reduce the amount of paired transcribed data required to train the model for the target downstream TTS task. The main idea is to pre-train the model to reconstruct de-warped mel-spectrograms from warped ones, which may allow the model to learn proper temporal assignment relation between input and output sequences. In addition, we propose a data augmentation method that further improves the data efficiency in fine-tuning. We empirically demonstrate the effectiveness of our proposed method in low-resource language scenarios, achieving outstanding performance compared to competing methods. The code and audio samples are available at: https://github.com/cnaigithub/SpeechDewarping

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube