Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On de novo Bridging Paired-end RNA-seq Data (2303.15594v1)

Published 27 Mar 2023 in q-bio.GN and cs.DS

Abstract: The high-throughput short-reads RNA-seq protocols often produce paired-end reads, with the middle portion of the fragments being unsequenced. We explore if the full-length fragments can be computationally reconstructed from the sequenced two ends in the absence of the reference genome - a problem here we refer to as de novo bridging. Solving this problem provides longer, more informative RNA-seq reads, and benefits downstream RNA-seq analysis such as transcript assembly, expression quantification, and splicing differential analysis. However, de novo bridging is a challenging and complicated task owing to alternative splicing, transcript noises, and sequencing errors. It remains unclear if the data provides sufficient information for accurate bridging, let alone efficient algorithms that determine the true bridges. Methods have been proposed to bridge paired-end reads in the presence of reference genome (called reference-based bridging), but the algorithms are far away from scaling for de novo bridging as the underlying compacted de Bruijn graph(cdBG) used in the latter task often contains millions of vertices and edges. We designed a new truncated Dijkstra's algorithm for this problem, and proposed a novel algorithm that reuses the shortest path tree to avoid running the truncated Dijkstra's algorithm from scratch for all vertices for further speeding up. These innovative techniques result in scalable algorithms that can bridge all paired-end reads in a cdBG with millions of vertices. Our experiments showed that paired-end RNA-seq reads can be accurately bridged to a large extent. The resulting tool is freely available at https://github.com/Shao-Group/rnabridge-denovo.

Citations (2)

Summary

We haven't generated a summary for this paper yet.