Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Robustness of Dynamics in Games: A Contraction Mapping Decomposition Approach (2303.15386v1)

Published 27 Mar 2023 in cs.GT

Abstract: A systematic framework for analyzing dynamical attributes of games has not been well-studied except for the special class of potential or near-potential games. In particular, the existing results have shortcomings in determining the asymptotic behavior of a given dynamic in a designated game. Although there is a large body literature on developing convergent dynamics to the Nash equilibrium (NE) of a game, in general, the asymptotic behavior of an underlying dynamic may not be even close to a NE. In this paper, we initiate a new direction towards game dynamics by studying the fundamental properties of the map of dynamics in games. To this aim, we first decompose the map of a given dynamic into contractive and non-contractive parts and then explore the asymptotic behavior of those dynamics using the proximity of such decomposition to contraction mappings. In particular, we analyze the non-contractive behavior for better/best response dynamics in discrete-action space sequential/repeated games and show that the non-contractive part of those dynamics is well-behaved in a certain sense. That allows us to estimate the asymptotic behavior of such dynamics using a neighborhood around the fixed point of their contractive part proxy. Finally, we demonstrate the practicality of our framework via an example from duopoly Cournot games.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.