Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Uniformly Random Colourings of Sparse Graphs (2303.15367v1)

Published 27 Mar 2023 in math.CO and cs.DM

Abstract: We analyse uniformly random proper $k$-colourings of sparse graphs with maximum degree $\Delta$ in the regime $\Delta < k\ln k $. This regime corresponds to the lower side of the shattering threshold for random graph colouring, a paradigmatic example of the shattering threshold for random Constraint Satisfaction Problems. We prove a variety of results about the solution space geometry of colourings of fixed graphs, generalising work of Achlioptas, Coja-Oghlan, and Molloy on random graphs, and justifying the performance of stochastic local search algorithms in this regime. Our central proof relies only on elementary techniques, namely the first-moment method and a quantitative induction, yet it strengthens list-colouring results due to Vu, and more recently Davies, Kang, P., and Sereni, and generalises state-of-the-art bounds from Ramsey theory in the context of sparse graphs. It further yields an approximately tight lower bound on the number of colourings, also known as the partition function of the Potts model, with implications for efficient approximate counting.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube