Learned Query Superoptimization (2303.15308v2)
Abstract: Traditional query optimizers are designed to be fast and stateless: each query is quickly optimized using approximate statistics, sent off to the execution engine, and promptly forgotten. Recent work on learned query optimization have shown that it is possible for a query optimizer to "learn from its mistakes," correcting erroneous query plans the next time a plan is produced. But what if query optimizers could avoid mistakes entirely? This paper presents the idea of learned query superoptimization. A new generation of query superoptimizers could autonomously experiment to discover optimal plans using exploration-driven algorithms, iterative Bayesian optimization, and program synthesis. While such superoptimizers will take significantly longer to optimize a given query, superoptimizers have the potential to massively accelerate a large number of important repetitive queries being executed on data systems today.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.