Papers
Topics
Authors
Recent
2000 character limit reached

Learned Query Superoptimization (2303.15308v2)

Published 27 Mar 2023 in cs.DB

Abstract: Traditional query optimizers are designed to be fast and stateless: each query is quickly optimized using approximate statistics, sent off to the execution engine, and promptly forgotten. Recent work on learned query optimization have shown that it is possible for a query optimizer to "learn from its mistakes," correcting erroneous query plans the next time a plan is produced. But what if query optimizers could avoid mistakes entirely? This paper presents the idea of learned query superoptimization. A new generation of query superoptimizers could autonomously experiment to discover optimal plans using exploration-driven algorithms, iterative Bayesian optimization, and program synthesis. While such superoptimizers will take significantly longer to optimize a given query, superoptimizers have the potential to massively accelerate a large number of important repetitive queries being executed on data systems today.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.