Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Context-Aware Transformer for 3D Point Cloud Automatic Annotation (2303.14893v1)

Published 27 Mar 2023 in cs.CV

Abstract: 3D automatic annotation has received increased attention since manually annotating 3D point clouds is laborious. However, existing methods are usually complicated, e.g., pipelined training for 3D foreground/background segmentation, cylindrical object proposals, and point completion. Furthermore, they often overlook the inter-object feature relation that is particularly informative to hard samples for 3D annotation. To this end, we propose a simple yet effective end-to-end Context-Aware Transformer (CAT) as an automated 3D-box labeler to generate precise 3D box annotations from 2D boxes, trained with a small number of human annotations. We adopt the general encoder-decoder architecture, where the CAT encoder consists of an intra-object encoder (local) and an inter-object encoder (global), performing self-attention along the sequence and batch dimensions, respectively. The former models intra-object interactions among points, and the latter extracts feature relations among different objects, thus boosting scene-level understanding. Via local and global encoders, CAT can generate high-quality 3D box annotations with a streamlined workflow, allowing it to outperform existing state-of-the-art by up to 1.79% 3D AP on the hard task of the KITTI test set.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.