Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global Relation Modeling and Refinement for Bottom-Up Human Pose Estimation (2303.14888v1)

Published 27 Mar 2023 in cs.CV and cs.AI

Abstract: In this paper, we concern on the bottom-up paradigm in multi-person pose estimation (MPPE). Most previous bottom-up methods try to consider the relation of instances to identify different body parts during the post processing, while ignoring to model the relation among instances or environment in the feature learning process. In addition, most existing works adopt the operations of upsampling and downsampling. During the sampling process, there will be a problem of misalignment with the source features, resulting in deviations in the keypoint features learned by the model. To overcome the above limitations, we propose a convolutional neural network for bottom-up human pose estimation. It invovles two basic modules: (i) Global Relation Modeling (GRM) module globally learns relation (e.g., environment context, instance interactive information) among region of image by fusing multiple stages features in the feature learning process. It combines with the spatial-channel attention mechanism, which focuses on achieving adaptability in spatial and channel dimensions. (ii) Multi-branch Feature Align (MFA) module aggregates features from multiple branches to align fused feature and obtain refined local keypoint representation. Our model has the ability to focus on different granularity from local to global regions, which significantly boosts the performance of the multi-person pose estimation. Our results on the COCO and CrowdPose datasets demonstrate that it is an efficient framework for multi-person pose estimation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.