Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Coupling Artificial Neurons in BERT and Biological Neurons in the Human Brain (2303.14871v1)

Published 27 Mar 2023 in cs.CL

Abstract: Linking computational NLP models and neural responses to language in the human brain on the one hand facilitates the effort towards disentangling the neural representations underpinning language perception, on the other hand provides neurolinguistics evidence to evaluate and improve NLP models. Mappings of an NLP model's representations of and the brain activities evoked by linguistic input are typically deployed to reveal this symbiosis. However, two critical problems limit its advancement: 1) The model's representations (artificial neurons, ANs) rely on layer-level embeddings and thus lack fine-granularity; 2) The brain activities (biological neurons, BNs) are limited to neural recordings of isolated cortical unit (i.e., voxel/region) and thus lack integrations and interactions among brain functions. To address those problems, in this study, we 1) define ANs with fine-granularity in transformer-based NLP models (BERT in this study) and measure their temporal activations to input text sequences; 2) define BNs as functional brain networks (FBNs) extracted from functional magnetic resonance imaging (fMRI) data to capture functional interactions in the brain; 3) couple ANs and BNs by maximizing the synchronization of their temporal activations. Our experimental results demonstrate 1) The activations of ANs and BNs are significantly synchronized; 2) the ANs carry meaningful linguistic/semantic information and anchor to their BN signatures; 3) the anchored BNs are interpretable in a neurolinguistic context. Overall, our study introduces a novel, general, and effective framework to link transformer-based NLP models and neural activities in response to language and may provide novel insights for future studies such as brain-inspired evaluation and development of NLP models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube