Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

FairGAT: Fairness-aware Graph Attention Networks (2303.14591v1)

Published 26 Mar 2023 in cs.LG and cs.CY

Abstract: Graphs can facilitate modeling various complex systems such as gene networks and power grids, as well as analyzing the underlying relations within them. Learning over graphs has recently attracted increasing attention, particularly graph neural network-based (GNN) solutions, among which graph attention networks (GATs) have become one of the most widely utilized neural network structures for graph-based tasks. Although it is shown that the use of graph structures in learning results in the amplification of algorithmic bias, the influence of the attention design in GATs on algorithmic bias has not been investigated. Motivated by this, the present study first carries out a theoretical analysis in order to demonstrate the sources of algorithmic bias in GAT-based learning for node classification. Then, a novel algorithm, FairGAT, that leverages a fairness-aware attention design is developed based on the theoretical findings. Experimental results on real-world networks demonstrate that FairGAT improves group fairness measures while also providing comparable utility to the fairness-aware baselines for node classification and link prediction.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.