Prompt-Guided Transformers for End-to-End Open-Vocabulary Object Detection (2303.14386v1)
Abstract: Prompt-OVD is an efficient and effective framework for open-vocabulary object detection that utilizes class embeddings from CLIP as prompts, guiding the Transformer decoder to detect objects in both base and novel classes. Additionally, our novel RoI-based masked attention and RoI pruning techniques help leverage the zero-shot classification ability of the Vision Transformer-based CLIP, resulting in improved detection performance at minimal computational cost. Our experiments on the OV-COCO and OVLVIS datasets demonstrate that Prompt-OVD achieves an impressive 21.2 times faster inference speed than the first end-to-end open-vocabulary detection method (OV-DETR), while also achieving higher APs than four two-stage-based methods operating within similar inference time ranges. Code will be made available soon.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.