Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Attention-based Speech Enhancement Using Human Quality Perception Modelling (2303.13685v1)

Published 23 Mar 2023 in eess.AS and eess.SP

Abstract: Perceptually-inspired objective functions such as the perceptual evaluation of speech quality (PESQ), signal-to-distortion ratio (SDR), and short-time objective intelligibility (STOI), have recently been used to optimize performance of deep-learning-based speech enhancement algorithms. These objective functions, however, do not always strongly correlate with a listener's assessment of perceptual quality, so optimizing with these measures often results in poorer performance in real-world scenarios. In this work, we propose an attention-based enhancement approach that uses learned speech embedding vectors from a mean-opinion score (MOS) prediction model and a speech enhancement module to jointly enhance noisy speech. The MOS prediction model estimates the perceptual MOS of speech quality, as assessed by human listeners, directly from the audio signal. The enhancement module also employs a quantized LLM that enforces spectral constraints for better speech realism and performance. We train the model using real-world noisy speech data that has been captured in everyday environments and test it using unseen corpora. The results show that our proposed approach significantly outperforms other approaches that are optimized with objective measures, where the predicted quality scores strongly correlate with human judgments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube