Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

OFA$^2$: A Multi-Objective Perspective for the Once-for-All Neural Architecture Search (2303.13683v1)

Published 23 Mar 2023 in cs.NE, cs.AI, cs.CV, and cs.LG

Abstract: Once-for-All (OFA) is a Neural Architecture Search (NAS) framework designed to address the problem of searching efficient architectures for devices with different resources constraints by decoupling the training and the searching stages. The computationally expensive process of training the OFA neural network is done only once, and then it is possible to perform multiple searches for subnetworks extracted from this trained network according to each deployment scenario. In this work we aim to give one step further in the search for efficiency by explicitly conceiving the search stage as a multi-objective optimization problem. A Pareto frontier is then populated with efficient, and already trained, neural architectures exhibiting distinct trade-offs among the conflicting objectives. This could be achieved by using any multi-objective evolutionary algorithm during the search stage, such as NSGA-II and SMS-EMOA. In other words, the neural network is trained once, the searching for subnetworks considering different hardware constraints is also done one single time, and then the user can choose a suitable neural network according to each deployment scenario. The conjugation of OFA and an explicit algorithm for multi-objective optimization opens the possibility of a posteriori decision-making in NAS, after sampling efficient subnetworks which are a very good approximation of the Pareto frontier, given that those subnetworks are already trained and ready to use. The source code and the final search algorithm will be released at https://github.com/ito-rafael/once-for-all-2

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com