Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Scaled Quantization for the Vision Transformer (2303.13601v1)

Published 23 Mar 2023 in eess.IV, cs.AR, and cs.CV

Abstract: Quantization using a small number of bits shows promise for reducing latency and memory usage in deep neural networks. However, most quantization methods cannot readily handle complicated functions such as exponential and square root, and prior approaches involve complex training processes that must interact with floating-point values. This paper proposes a robust method for the full integer quantization of vision transformer networks without requiring any intermediate floating-point computations. The quantization techniques can be applied in various hardware or software implementations, including processor/memory architectures and FPGAs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.