Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Requirement Formalisation using Natural Language Processing and Machine Learning: A Systematic Review (2303.13365v1)

Published 18 Mar 2023 in cs.CL, cs.AI, cs.LG, and cs.SE

Abstract: Improvement of software development methodologies attracts developers to automatic Requirement Formalisation (RF) in the Requirement Engineering (RE) field. The potential advantages by applying NLP and Machine Learning (ML) in reducing the ambiguity and incompleteness of requirement written in natural languages is reported in different studies. The goal of this paper is to survey and classify existing work on NLP and ML for RF, identifying challenges in this domain and providing promising future research directions. To achieve this, we conducted a systematic literature review to outline the current state-of-the-art of NLP and ML techniques in RF by selecting 257 papers from common used libraries. The search result is filtered by defining inclusion and exclusion criteria and 47 relevant studies between 2012 and 2022 are selected. We found that heuristic NLP approaches are the most common NLP techniques used for automatic RF, primary operating on structured and semi-structured data. This study also revealed that Deep Learning (DL) technique are not widely used, instead classical ML techniques are predominant in the surveyed studies. More importantly, we identified the difficulty of comparing the performance of different approaches due to the lack of standard benchmark cases for RF.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.