Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Laplacian Segmentation Networks Improve Epistemic Uncertainty Quantification (2303.13123v2)

Published 23 Mar 2023 in cs.CV and cs.LG

Abstract: Image segmentation relies heavily on neural networks which are known to be overconfident, especially when making predictions on out-of-distribution (OOD) images. This is a common scenario in the medical domain due to variations in equipment, acquisition sites, or image corruptions. This work addresses the challenge of OOD detection by proposing Laplacian Segmentation Networks (LSN): methods which jointly model epistemic (model) and aleatoric (data) uncertainty for OOD detection. In doing so, we propose the first Laplace approximation of the weight posterior that scales to large neural networks with skip connections that have high-dimensional outputs. We demonstrate on three datasets that the LSN-modeled parameter distributions, in combination with suitable uncertainty measures, gives superior OOD detection.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.